Ciri-ciri, persoalan-persoalan dan masalah-masalah Letupan_Besar

Beberapa masalah timbul selari dengan teori Letupan Besar sepanjang sejarahnya. Sebahagian daripadanya hanya tinggal sejarah dan telah dielakkan sama ada ketika pengubahsuaian teori mahupun sebagai keputusan daripada cerapan yang lebih baik. Isu lain seperti masalah ‘halo cluspy’ dan masalah galaksi kerdil jarim gelap sejuk, tidak dikira teruk kerana ia masih boleh diterima melalui penapisan teori.

Terdapat sedikit penyokong kosmologi bukan piawai yang ragu-ragu yang wujudnya Letupan Besar. Mereka mendakwa penyelesaian kepada masalah biasa teori Letupan Besar adalah melibatkan perubahan ad hoc (sesuatu yang tidak dirancang dan tidak formal) dan tambahan kepada teori. Yang sering dibidas adalah bahagian kosmologi biasa termasuklah jirim gelap, tenaga gelap dan pengembungan kosmik. Walau bagaimanapun, ketika penjelasan bagi perkera berkenaan masih menjadi persoalan, telah dicadangkan cerapan nukleosintesis Letupan Besar bebas, latar belakang gelombang mikro kosmik, struktur berskala besar dan supernova Type Ia. Kesan graviti bagi ciri tersebut difahami secara cerapan dan teori tetapi mereka masih belum lagi disekalikan ke dalam Model Piawai fizik zarah. Walaupun beberapa aspek teori masih tidak cukup lagi diterangkan oleh fizik asas, hampir semua ahli astronomi dan fizik menerima bahawa perkaitan di antara teori dan cerapan Letupan Besar telahpun membentuk bahagian asas teori tersebut.

Berikut adalah senarai pendek “masalah” dan kekeliruan Letupan Besar.

Masalah ufuk

Rencana utama: Masalah ufuk

Masalah ufuk adalah berdasarkan maklumat iaitu sesuatu tidak boleh bergerak lebih laju daripada cahaya, maka dua kawasan angkasa yang dipisahkan oleh jarak yang lebih luas daripada kelajuan cahaya yang dikalikan dengan usia alam semesta tidak boleh berada dalam hubungan kausal (kes sebab dan akibat). Isotropi latar belakang gelombang mikro kosmik (CMB) yang dicerap yang bermasalah dalam hal ni kerana saiz mengufuk pada suatu masa bergantung kepada saiz yang lebih kurang 2 darjah di atas langit. Jika alam semesta mempunyai sejarah pengembangan yang sama sejak zaman Planck, tiada mekanisme yang mampu menyebabkan kawasan tersebut mempunyai suhu yang sama.

Penyelesaian kepada ketidaktetapan yang ketara ini datang dari teori pengembungan iaitu medan tenaga isotropi skalar dan homogen menguasai alam semesta 10-35 saat selepas zaman Planck. Ketika pengembungan, alam semesta mengalami pengembangan secara eksponen dan kawasan dalam hubungan kausal mengembang melangkaui ufuk satu sama lain.Prinsip ketidakpastian Heisenberg meramalkan yang ketika fasa pengembungan terdapat perubahan naik turun kuantum terma yang akan diperbesarkan kepada skala kosmik. Perubahan tersebut bertindak seperti benih bagi semua struktur aliran dalam alam semesta. Selepas pengembungan, alam semesta berkembang mengikut Hukum Hubble dan kawasan yang berada di luar hub ungan kausal kembali ke ufuk. Ini menjelaskan isotropi yang tercerap bagi CMB. Pengembungan meramalkan bahawa perubahan naik turun primordial adalah hampir takvarian pada skala dan Gaussian yang mana telah disahkan dengan jitu oleh pengukuran CMB.

Masalah kedataran

Rencana utama: Masalah kedataran

Masalah Kedataran adalah masalah cerapan yang disebabkan pertimbangan geometri yang dikaitkan dengan metrik Friedmann-Lemaître-Robertson-Walker. Secara umumnya, alam semesta boleh mempunyai tiga jenis geometri: geometri hiperbola, geometri Euclid atau geometri elips. Geometri ditentukan oleh jumlah ketumpatan tenaga alam semesta: bentuk hiperbola disebabkan ketumpatan kurang daripada ketumpatan genting, bentuk elips kerana ketumpatan lebih besar daripada ketumpatan genting dan bentuk Euclid kerana ketumpatan genting. Alam semesta perlu berada dalam satu bahagian dalam 1015 dari ketumpatan genting dalam langkah yang terawal. Sisihan yang besar akan menyebabkan Haba Maut atau Runtuhan Besar, dan alam semesta tidak akan wujud kini.

Penyelesaian yang mungkin bagi masalah ini sekali lagi datang dari teori pengembungan. Ketika tempoh pengembungan, ruang-masa mengembang sehinggakan baki kelengkungan yang berkait dengannya akan dilicinkan sehingga ketepatan bertahap tinggi. Maka, dipercayai pengembungan membawa ruang alam semesta hampir mendatar.

Ekakutub magnet

Bangkangan terhadap ekakutub magnet telah timbul pada akhir dekad 1970-an. Teori penyatuan agung meramalkan kecacatan titik di angkasa yang dinyatakan sebagai ekakutub magnet dengan ketumpatan yang lebih tinggi dari apa yang malar dengan cerapan, menyatakan yang pencari tidak pernah menjumpai apa-apa ekakutub. Masalah ini turut diselesaikan oleh pengembangan kosmik yang mengalihkan semua kecacatan titik dari semesta tercerapkan dengan cara yang sama bagi kaitan geometri dengan kedataran.

Ketaksimetrian barion

Masih belum difahami mengapa alam semesta mempunyai lebih jirim berbanding antijirim. Telah dianggap bahawa apabila alam semesta masih muda dan sangat panas, ia berada dalam keseimbangan statistik dan mengandungi bilangan yang sama bagi barion dan anti-barion. Walau bagaimanapun, cerapan mencadangkan bahawa alam semesta, termasuk bahagian yang jauh, dibuat hampir kesemuanya daripada jirim. Proses yang tidak diketahui yang dipanggil bariogenesis menciptakan ketaksimetrian. Untuk berlakunya bariogenesis, syarat Sakharov, yang diperkenalkan Andrei Sakharov, harus dipatuhi. Ia memerlukan nombor barion tidak diabadikan, simetri C dan CP harus dicanggahi dan alam semesta muncul dari keseimbangan termodinamik. Semua syarat ini terdapat dalam Model Piawai tetapi kesannya belum cukup kuat untuk menjelaskan kehadiran asimetri barion. Eksperimen bertempat di CERN berhampiran Geneva untuk memerangkap anti-hidrogen untuk membandingkan spektrumnya dengan hidrogen. Apa-apa perbezaan akan menjadi bukti pencabulan simetri CPT dan juga pencabulan Lorentz.

Usia kelompok membulat

Pada pertengahan 1990-an, cerapan kelompok membulat kelihatan tidak sepadan dengan Letupan Besar. Simulasi komputer yang berpadanan dengan cerapan populasi stellar bagi kelompok membulat mencadangkan yang ia berusia 15 bilion tahun yang berselisih dengan usia alam semesta iaitu 13.7 bilion tahun. Isu ini telah diselesaikan pada akhir dekad 1990-an apabila simulasi komputer yang baru yang memasukkan sekali kesan kehilangan jisim disebabkan ribut stellar lalu menunjukkan usia yang lebih muda bagi kelompok membulat [14]. Masih terdapat persoalan tentang berapa tepatnya usia kelompok itu dikira tetapi jelas bahawa objek tersebut adalah antara yang tertua dalam alam semesta.

Pengembungan

Rencana utama: Pengembungan kosmik

Alan Guth telah menyarankan suatu tempoh pegembungan pada awal Letupan Besar bilamana semesta mengembang secara eksponen. Wujudnya fasa ini dibolehkan oleh pecahan simetri, dan membolehkan penyelesaian masalah-masalah seperti kedataran semesta dan kurangnya ekakutub magnet.

Jirim gelap

Rencana utama: Jirim gelap

Ketika 1970-an and 1980-an, pelbagai jenis pemerhatian (terutama lengkungan putaran galaksi) menunjukkan terdapat jirim yang tidak boleh dilihat dalam alam semesta untuk menerangkan sebab kekuatan ketara daya graviti di dalam dan di antara galaksi-galaksi. Ini membawa kepada idea yang 90% daripada jirim di alam semesta adalah tidak normal atau bukan jirim barionik tetapi lebih kepada jirim gelap. Sebagai tambahan, dengan menganggap yang alam semesta hampir kebanyakan adalah jirim biasa membawa kepada ramalan yang amat tidak menepati pemerhatian. Hendak diikutkan, alam semesta ini tidak terlalu berisi dan mengandungi sangat kurang deuterium jika tidak dikaitkan dengan jirim gelap. Walaupun pada mulanya jirim gelap ini menimbulkan kontroversi, kini ia diterima sebagai sebahagian daripada kosmologi akibat pemerhatian tentang anistropi dalam CMB, sebaran halaju gugusan galaksi, taburan struktur berskala-besar, kajian graviti dan pengukuran sinar-x dari gugusan galaksi. Jirim gelap hanya dikesan melalui tanda kegravitiannya; tiada zarah yang boleh lakukan begitu yang telah dikaji di dalam makmal. Walau bagaimanapun, terdapat banyak calon bagi fizik zarah untuk jirim gelap dan beberapa projek untuk mengesannya bakal dilakukan.

Tenaga gelap

Rencana utama: Tenaga gelap

Pada 1990-an, pengukuran terperinci akan ketumpatan jisim alam semesta mendedahkan nilai menunjukkan 30% ketumpatan genting. Oleh kerana alam semesta berbentuk hampir mendatar. Seperti yang tertunjuk dalam pengukuran CMB, lebih kurang 70% ketumpatan tenaga tidak dikira. Misterinya kini adalah berkait dengan yang satu lagi: pengukuran bebas supernova Type Ia mendedahkan yang pengembangan tidak mengalami pecutan linear berbanding terlalu mengiky Hukum Hubble. Untuk menerangkan pecutan ini, kerelatifan am menyatakan kebanyakan kandungan alam semesta adalah komponen tenaga dengan tekanan negative yang besar. Tenaga gelap ini dikira mengisi 70% tadi. Sifatnya adalah satu misteri besar dalam Letupan Besar. Kebarangkalian sifatnya adalah seperti skalar pemalar kosmologi. Cerapan untuk membantu lebih memahami tentang ini masih dilakukan. Keputusan dari WMAP 2006 menunjukkan yang alam semesta terdiri daripada 74% tenaga gelap, 22% jirim gelap dan 4% jirim biasa.

Rujukan

WikiPedia: Letupan_Besar http://www.findarticles.com/p/articles/mi_m1511/is... http://www.historyoftheuniverse.com/ http://news.nationalgeographic.com/news/2006/03/03... http://skyandtelescope.com/news/article_1697_1.asp http://cosmology.berkeley.edu/Education/IUP/Big_Ba... http://www.submm.caltech.edu/cso/ http://cfa-www.harvard.edu/seuforum/bigbanglanding... http://www.nap.edu/books/0309093139/html/136.html http://www.ncsu.edu/felder-public/kenny/papers/cos... http://www.sabanciuniv.edu/do/eng/?PodCast/PodCast...